

Reg. I	Vo.	:	**	• •		•		•	•		÷					ij	*			6	*	*

Name:

Third Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 3C03MAT – CH: Mathematics for Chemistry – III

Time: 3 Hours

= (U)y .1 = y = 'y evice .mpotensar sosigs Max. Marks : 40

PART- A term half multirovago parel At

Answer any four questions. Each question carries one mark.

- 1. Solve y' = y.
- 2. Give the standard of a first order linear ordinary differential equation.
- 3. Let $y_1 = \cos wx$ and $y_2 = \sin wx$. Find the Wronskian $W(y_1, y_2)$.
- 4. Find the Laplace transform of cosh at.
- Let f(x) and g(x) be periodic function with period p. Find the period of af(x) + bg(x), where a and b are constants.

D = (0) V .E -= (0) V . X6 PART - B

Answer any seven questions. Each question carries 2 marks.

- 6. Verify that $y = ce^{-4x} + 0.35$ is a solution of the ODE y' + 4y = 1.4.
- 7. Solve the initial value problem $y' = \frac{-4x}{y}$, y(2) = 3.
- 8. Solve $cos(x + y) dx + (3x^2 + 2y + cos(x + y))dy = 0$.

K22U 3634

- 9. Verify that $\cos 3x$ and $\sin 3x$ are linear linearly independent and form a basis of solution of y'' + 9y = 0.
- 10. Find a general solution of y'' 0.25y = 0.
- 11. Find the inverse Laplace transform of $\frac{-s+11}{s^2-2s-3}$.
- 12. Prove that \mathcal{L} (tsinh at) is $\frac{2as}{(s^2 a^2)^2}$.
- 13. Using Laplace transform, solve y'' y = t, y(0) = 1, y'(0) = 1.
- 14. Using convolution find $\mathcal{L}^{-1} \frac{1}{s^2(s-a)}$.
- 15. Find the Fourier series of f(x) = |x| in $\pi < x < \pi$, which is assumed to be a periodic function with period 2π .

Answer any four questions. Each question carries three marks.

- 16. Solve $2xyy' = y^2 x^2$.
- 17. Solve the initial value problem $y' + y \tan x = \sin 2x$, y(0) = 1.
- 18. Solve $y'' + 3y' + 2.25y = -10e^{-1.5x}$.
- 19. Solve the initial value problem $y'' + y' = 8x^2$, y(0) = -3, y'(0) = 0.
- 20. Using Laplace method solve y'' + y' 6y = 0, y(0) = 1, y'(0) = 1.
- 21. Find a Fourier series to represent f(x) in the interval $(-\pi, \pi)$, where $f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases} \text{ and } f(x + 2\pi) = f(x).$
- 22. Find the Fourier series of the function f(x) = $\begin{cases}
 0 & \text{if } -2 < x < 1 \\
 1 & \text{if } -1 < x < 1, \\
 0 & \text{if } 1 < x < 2
 \end{cases}$

PART - D

Answer any two questions. Each question carries five marks.

- 23. Solve $y' + xy = xy^{-1}$, y(0) = 3.
- 24. Using method of variation of parameters, solve $y'' + y = \sec x$.
- 25. Using Laplace transform, solve $y'_1 2y_1 + 3y_2 = 0$, $y'_2 y_1 + 2y_2 = 0$, $y_1(0) = 0$, $y_2(0) = 0$.
- 26. Find two half-range expansions of the function $f(x) = \pi x$, $0 < x < \pi$.